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Bridging the gap between the Short-Time Fourier 

Transform (STFT), Wavelets, the Constant-Q 

Transform and Multi-resolution STFT 
(*) Carlos Mateo1, Juan Antonio Talavera2 

 

Abstract - The Short-Time Fourier Transform (STFT) is 

extensively used to convert signals from the time-domain 

into the time-frequency domain. However, the standard 

STFT has the drawback of having a fixed window size. 

Recently, we proposed a variant of that transform which 

fixes the window size in the frequency domain (STFT-FD). 

In this paper, we revisit that formulation, showing its 

similarity to existing techniques. Firstly, the formulation is 

revisited from the point of view of the STFT and some 

improvements are proposed. Secondly, the Continuous 

Wavelet Transform (CWT) equation is used to formulate 

the transform in the continuous time using wavelet theory 

and to discretize it. Thirdly, the constant-Q transform 

(CQT) is analyzed showing the similarities in the equations 

of both transforms, and the differences in terms of how the 

sweep is carried out is discussed. Fourthly, the analogies 

with multi-resolution STFT are analyzed. Finally, the 

representations of a period chirp and an electrocardiogram 

signal in the time-frequency domain and the time-scale 

domain are obtained and used to compare the different 

techniques. The analysis in this paper shows that the 

proposed transform can be expressed as a variant of STFT, 

and as an alternative discretization of the CWT. It could 

also be considered a variant of the CQT and a special case 

of multi-resolution STFT.  

 

Index terms - Wavelets, Short-Time Fourier Transform, 

constant-Q transform, time-frequency, time-scale, 

electrocardiogram. 

1.  INTRODUCTION 

he Short-Time Fourier Transform (STFT) can be applied to 

convert a signal from the time-domain into the time-

frequency domain. It has been used to process signals in 

many research areas, for example in image processing [1], 

speech [2], engineering [3, 4], biology and medicine [5]. The 

STFT can be used to analyze non-stationary signals, 

determining how the spectral content of signals changes over 

time. This transform localizes the signal in time using a 

window. However, the standard STFT transform has the 

disadvantage of using a fixed window size. On one hand, long 

windows have better frequency resolution but poor time 

resolution. On the other hand, short windows provide better 
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time resolution but lower frequency resolution [6]. Several 

alternatives can be used to improve this transform, such as 

adaptive STFT [7, 8] and multi-resolution STFT [9–11]. 

Adaptive techniques adjust the window size depending on local 

signal characteristics. Therefore, with adaptive STFT, different 

window sizes are used for different time instants. This allows 

us to use different time-frequency resolutions depending on 

how the signal evolves over time. In multi-resolution STFT the 

signal is divided into frequency bands, and each of them is 

processed with a different window size [9, 10]. This allows us 

to combine the results of several STFTs to obtain the resulting 

time-frequency representation (TFR). In this technique 

different window sizes are used for different frequencies. The 

transform proposed here is closer to multi-resolution STFT than 

to adaptive STFT. The similarities and differences of the 

proposed transform and multi-resolution STFT are discussed in 

this paper. The multi-scale STFT is a more complex technique 

that combines both approaches by modifying the window size 

both in the time and in the frequency domain [12]. Multi-scale 

STFT allows us to dynamically detect the degree of transience 

of individual signal components and to automatically process 

them with adequate time-frequency resolution. 

Other alternatives to the Fourier Transform have been 

proposed. For example, the Fractional Fourier Transform 

(FRFT) is a generalization of the conventional Fourier analysis 

which aims to capture the characteristics of functions in the 

mixed time and frequency domains, called fractional domain 

[13]. It can be interpreted as a rotation in the time-frequency 

plane. This domain has applications, for example, in the 

generalized sampling expansion [14]. The transform is more 

adequate for processing linear frequency type non-stationary 

functions.  The Short-Time Fractional Fourier Transform is a 

windowed version of the FRFT [15], which is more adequate 

for representing strongly non-linear chirp functions [16]. Linear 

canonical transforms (LCTs) are a generalization of other 

transforms such as Fourier, fractional Fourier and Laplace. 

They are a three-parameter family of integral transforms [17], 

that are a power tool for optics and signal processing, lattice 

sampling being analyzed in [18]. The offset linear canonical 

transform has also been proposed, as a time-shifted and 

frequency modulated version of the LCT with six parameters 

[19, 20].  

T 
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Wavelets provide an alternative framework that can be applied 

to various signal processing applications [21]. The Continuous 

Wavelet Transform (CWT), which is based on wavelet analysis, 

can be also used as an alternative to STFT in order to obtain a 

TFR [22, 23]. Wavelets are also used in image processing [24], 

engineering [25] and medicine [26, 27]. The fidelity factor, Q, 

is the inverse of the relative bandwidth [28]. This factor remains 

constant in wavelets [28]. Wavelets and STFT are linear TFRs, 

satisfying the superposition or linearity principle [29]. In 

contrast to the standard STFT which uses a single window size, 

the Wavelet Transform (WT) uses short windows at high 

frequencies and long windows at low frequencies [21]. 

Wavelets rely on the use of a mother wavelet function that can 

be scaled and shifted, to correlate with the anomalies or events 

of the signals. In the CWT, the parameters of the wavelets (time 

and scale) are continuous. When the parameters of the wavelets 

are discrete, this leads to a Discrete Series Expansion. Finally, 

the Discrete Wavelet Transform (DWT) can also be used for 

discrete signals. For non-stationary signals, the conversion into 

a two-dimensional space allows representing how the properties 

of the signals evolve over time. The analysis of non-stationary 

signals was traditionally performed in the time-frequency 

domain using techniques such as the STFT. Wavelets also allow 

us to analyze signals in the time-scale domain [30]. Similar to 

the FRFT, the Fractional Wavelet Transform has also been 

proposed in wavelet theory [31]. 

The Constant-Q transform (CQT) can also be used to transform 

a discrete time domain signal into the time-frequency domain 

[32, 33].  This transform was initially proposed for music 

analysis, transforming against log(frequency) to obtain a 

constant pattern in the frequency domain. This transform can be 

expressed as a series of logarithmically spaced filters. In the 

CQT transform, the frequency bins are geometrically spaced, 

and their Q factor, which is the number of integer cycles 

processed, remains constant. Traditionally, one of the reasons 

for the unpopularity of this transform is the excessive 

computational complexity [34], which is partially mitigated by 

the increased computing capacity of modern computers. 

Besides, working with the data structure of the CQT is more 

complex than working with the time-frequency matrix of the 

STFT. This transform has already been applied to the analysis 

of electroencephalograms [35].  

In [36, 37] we presented the Short-Time Fourier Transform 

with the Window Size Fixed in the Frequency Domain (STFT-

FD). In this paper we improve the formulation of that transform 

and formulate it in continuous time showing how it bridges the 

gap between the Short-Time Fourier Transform, Wavelets, the 

Constant-Q Transform and Multi-resolution STFT. Thus in 

Section 2, we revisit the transform in the context of the STFT, 

improving the proposed formulation. In Section 3, the STFT-

FD is formulated in continuous time using wavelet theory. In 

Section 4, the similarities and differences with the constant-Q 

transform are discussed. In Section 5, it is shown that we can 

also consider the transform as a special case of multi-resolution 

STFT. Section 6 applies the proposed transform to a period 

chirp and to an electrocardiogram (ECG) signal, representing 

them in the time-frequency and time-scale domains, and 

comparing the results. Finally, Section 7 summarizes the main 

conclusions. 

2.  REVISION OF THE FORMULATION AS A STFT 

The proposed STFT-FD is defined in [36] following the  

standard STFT methodology. First, a window is applied around 

every time instant. Then, the Discrete Fourier Transform (DFT) 

is computed to obtain each frequency component. The only 

difference with the standard STFT is that instead of fixing the 

windows size in the time domain, it is determined by the 

number of cycles inside the window function, and therefore in 

this transform, the window size depends on the frequency. In 

this paper, we propose the following modifications to our initial 

formulation: 

 We normalize the transform to have the same energy at 

every frequency. In the Fourier Transform or in the 

standard STFT, each sinusoid is integrated during the 

same range and therefore all sinusoids have the same 

energy. However, in STFT-FD the window size is 

different for each frequency. Therefore, we need to use 

an energy normalization factor. As justified in Section 3, 

we propose to divide by the square root of the window 

size, expressed in number of samples. 

 Instead of using a definition of the Discrete Fourier 

transform with the indexes starting at 1, we change the 

notation to start at 0. 

 In this paper, we present the example of a Hamming 

Window defined by Eq. (1), but other types of window 

functions could be used. 

𝑤 [
𝑛

NW
] =

{
 
 

 
 0

𝑛

NW
< 0

𝑎0 − 𝑎1 ∙ 𝑐𝑜𝑠 (
2𝜋 ∙ 𝑛

NW
) 0 ≤

𝑛

NW
< 1

0
𝑛

NW
≥ 1

 
( 1 ) 

 

Where 𝑤(𝑛) is a window function with a size of NW samples 

(which should be even) and 𝑛 is a discrete index. 

As a result of these changes, the transform results in the 

following equation: 

 
STFT_FD{𝑥[𝑚]}[𝑚, 𝑝] = 

1

√𝑝 ∙ NC
∑ 𝑥 [𝑚 −

𝑝 ∙ NC

2
+ 𝑛] ∙ 𝑤 [

𝑛

𝑝 ∙ NC
] ∙ e

−i
2π∙𝑛

𝑝

𝑝∙NC−1

n=0

 

𝑝 ∈ {2, . . ,
NS

NC
} 

( 2 ) 

Where 𝑥(𝑚) is an input signal with NS samples and 𝑚 is a 

discrete index. The sweep is linear in the integer variable 𝑝, 

which represents the number of samples per cycle. NC is a 

design parameter that determines the number of cycles inside 

the window function. As shown in [36], the methodology to 

obtain this transform is the same as in the standard STFT, with 

the difference that NC is fixed and the number of samples of the 

window function (NW) depends on variable 𝑝, according to Eq. 

(3). 
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NW = 𝑝 ∙ NC 
( 3 ) 

As this transform was proposed following the methodology of 

the STFT [36], but with a different window size criterion, we 

can state that it is a variant of STFT. The similarities with 

wavelets, with the Constant-Q Transform and with multi-

resolution STFT are discussed in the following sections. 

3.  FORMULATION AS A WAVELET 

The Continuous Wavelet Transform (CWT) of a continuous-

time signal 𝑥(𝑡), at a scale (𝑠 >0) 𝑠 ∈ ℛ+, and translational 

value 𝑢 ∈ ℛ is defined as follows. 

𝐶𝑊𝑇𝑥(𝑢, 𝑠) =
1

√𝑠
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝑢

𝑠
)𝑑𝑡

∞

−∞

 ( 4 ) 

Where 𝜓(𝑡)  is the mother wavelet and 
1

√𝑠
 is an energy 

normalization factor so that the transformed signal will have the 

same energy at every scale [38]. We let 𝑣 be defined by Eq. (5). 

𝑣 = 𝑡 − 𝑢 
( 5 ) 

This leads to the following expression: 

𝐶𝑊𝑇𝑥(𝑢, 𝑠) =
1

√𝑠
∫ 𝑥(𝑣 + 𝑢)𝜓 (

𝑣

𝑠
) 𝑑𝑣

∞

−∞

 ( 6 ) 

Where we are directly applying the translation 𝑢 to the input 

signal. In this paper, we propose the following 𝜓(𝑡) function to 

be used in Eq. (6). 

𝜓(𝑡) = 𝑤(𝑡) ∙ 𝑒𝑖2𝜋∙NC∙𝑡 
( 7 ) 

Where 𝑤(𝑡)  is a window function with a size of 1s. In this 

paper, we show as example the case of a Hamming Window 

defined in the continuous time by Eq. (8), but other types of 

windows could be used. 

 

𝑤(𝑡) = {
0 𝑡 < 0

𝑎0 − 𝑎1 ∙ 𝑐𝑜𝑠(2𝜋 ∙ 𝑡) 0 ≤ 𝑡 < 1
0 𝑡 ≥ 1

 
( 8 ) 

This leads to the following expression. 

𝐶𝑊𝑇𝑥(𝑢, 𝑠) =
1

√𝑠
∫ 𝑥(𝑣 + 𝑢) ∙ 𝑤 (

𝑣

𝑠
) ∙ 𝑒−𝑖

2𝜋∙NC∙𝑣
𝑠 𝑑𝑣

∞

−∞

 
( 9 ) 

For discrete signals, using the number of samples of the window 

function (NW) for the scale, using 𝑏 as the discrete translational 

value, and 𝑛 being a discrete index, the transform can be 

expressed as follows. 

𝑋[𝑏, NW] =
1

√NW
∑ 𝑥[𝑏 + 𝑛] ∙ 𝑤 [

𝑛

NW
] ∙ e−𝑖

2π∙NC∙𝑛
NW

NW−1

n=0

 ( 10 ) 

For the sum to be centered, we use variable 𝑚 as defined by Eq. 

(11). 

𝑚 = 𝑏 +
NW

2
 ( 11 ) 

This results in Eq. (12). 

𝑋[𝑚, NW] =
1

√NW
∑ 𝑥 [𝑚 −

NW

2
+ 𝑛] ∙ 𝑤 [

𝑛

NW
] ∙ e−𝑖

2π∙NC∙𝑛
NW

NW−1

n=0

 
( 12 ) 

 

                                                           
3 𝑝 is the number of samples per cycle in the STFT-FD methodology. 

In the STFT-FD the number of samples of the window is related 

to 𝑝 by Eq. (3). Therefore, Eq. (12) can be rewritten as a 

function of 𝑝 according to Eq. (13). 
𝑋[𝑚, 𝑝] = 

1

√𝑝 ∙ NC
∑ 𝑥 [𝑚 −

𝑝 ∙ NC

2
+ 𝑛] ∙ 𝑤 [

𝑛

𝑝 ∙ NC
] ∙ e

−𝑖
2π∙𝑛
𝑝

𝑝∙NC−1

𝑛=0

 

( 13 ) 

This is the same equation as STFT-FD in Eq. (2). Therefore, the 

transform is an alternative discretization of the CWT. Instead 

of the more common exponential progression of scales, the 

proposed transform has a specific linear sweep in the scale 

variable, where all the dilatation (scale) parameters (𝑝) are 

integers3. As shown in Section 6, this kind of sweep is 

interesting for the analysis of some signals, such as ECGs. 

4.  FORMULATION AS A CONSTANT-Q TRANSFORM 

The constant-Q transform proposes to set the window size (𝑁𝑘) 

according to Eq. (14) [35].  

𝑁𝑘 =
fS
𝑓𝑘
Q 

( 14 ) 

𝑁𝑘 in CQT notation is equivalent to NW in the STFT-FD. The 

fidelity factor, Q, in CQT notation is equivalent to the number 

of cycles inside the window function (NC) in the STFT-FD. 
fs

𝑓𝑘
 

is the number of samples processed per cycle at a center 

frequency 𝑓𝑘, which is equivalent to variable 𝑝 in Eq. (3). The 

CQT transform is defined by Eq. (15) . 

XCQ[𝑚, 𝑘] = ∑ 𝑥[𝑗] ∙ 𝑎𝑘 [𝑗 − 𝑚 +
𝑁𝑘
2
]

𝑗=𝑚+⌊
𝑁𝑘
2
⌋

𝑗=𝑚−⌊
𝑁𝑘
2
⌋

 ( 15 ) 

Where 

𝑎𝑘[𝑛] =
1

𝑁𝑘
w[

𝑛

𝑁𝑘
] e

−i2π∙𝑛∙
𝑓𝑘
fs  

( 16 ) 

Let n be defined by Eq. (17). 

𝑛 = 𝑗 − 𝑚 +
𝑁𝑘
2

 ( 17 ) 

The transform can be reformulated as follows using Eq. (14) to 

(17),  

XCQ[𝑚, 𝑘] =
1

𝑁𝑘
∑ 𝑥 [𝑚 −

𝑁𝑘
2
+ 𝑛]𝑤 [

𝑛

𝑁𝑘
] e

−𝑖
2π∙Q∙𝑛
𝑁𝑘

2⌊
𝑁𝑘
2
⌋

𝑛=0

 ( 18 ) 

It is the same equation as the STFT-FD, except that,  

 It divides by the number of samples of the window. Instead, 

as shown in this paper, in order to have the same energy at 

every frequency, and according to wavelet theory, we 

divide by the square root of the number of samples of the 

window. However, wavelets can also be normalized in 

terms of amplitude (instead of in terms of energy), and in 
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that case the normalization factor would be 
1

𝑁𝑘
 as in the 

CQT transform [28]. 

 It requires rounding the window size. 

 The sum is calculated in an odd number of samples. This is 

not specific for all the implementations of the constant-Q 

transform. For example in [39] the sum is calculated from 

0 to 𝑁𝑘-1,  

Thus, the equations of both the CQT and STFT-FD transforms 

are similar. However, there is a major difference between the 

two transforms. The center frequencies being sampled in the 

CQT obey Eq. (19) [33].  

𝑓𝑘 = 𝑓1 ∙ 2
𝑘−1
B  

( 19 ) 

Where 𝑓1 is the center frequency of the lowest-frequency bin 

and B is the number of bins per octave. In the CQT, the number 

of bins per octave (B) is related to the fidelity factor (Q) by Eq. 

(20) [40]. 

Q =
1

2
1
B − 1

 ( 20 ) 

Therefore the number of bins is fixed for a given Q (which is 

equivalent to NC in the STFT-FD) and cannot be arbitrarily 

increased, because it also determines the number of cycles 

inside the window function [36]. In the cases analyzed in this 

paper, we apply the same Q factor to both the CQT and the 

STFT-FD 

The constant-Q Transform is obtained with a sweep in 

log(frequency), and it is usually explained as a series of 

logarithmically spaced filters. This makes it more complicated 

to work with the data structure of the CQT than with the time-

frequency matrix of the STFT. Instead, in the STFT-FD the 

sweep is linear for the number of samples per cycle (𝑝), which 

is inversely proportional to the frequency. These differences 

make the constant-Q Transform quicker to compute because it 

only calculates some frequencies. However, the 

implementation of that transform requires rounding values, 

implying therefore a discretization issue in real applications. 

Instead, in the STFT-FD, the sweep is linear in variable 𝑝, 

requiring neither this concept of a series of logarithmically 

spaced filters nor rounding the window size to an integer. In the 

STFT-FD formulation the window size is always directly an 

integer. In fact, in the way the STFT-FD is formulated, the 

natural way of representing is not in the time-frequency 

domain, but in the time-scale domain, where 𝑝 is the scale. 

However, as explained in [36], Eq. (21) can be used to represent 

this transform in the time-frequency domain. 

𝑓 =
1

𝑝 ∙ Ts
 

( 21 ) 

Where 𝑓 is the frequency and Ts is the sampling interval. 

Taking into account the similarity of the equations of both 

transforms and the difference in the sweep, we can state that the 

STFT-FD is a variant of the CQT that uses a different sweep. 

5.  FORMULATION AS MULTI-RESOLUTION STFT 

Multi-resolution STFT proposes to divide the signal into 

frequency bands, and then process each with a Fast Fourier 

Transform (FFT)  of a different window size [9–11]. In the 

STFT-FD the number of cycles inside the window function is 

fixed. This leads to always taking the NC component of the 

DFT. The result is then divided by the square root of the number 

of samples of the window, so that the transformed signal will 

have the same energy at every frequency, according to Eq. (22).  

STFT_FD{𝑥[m]}[𝑚, 𝑝] =
1

√𝑝 ∙ NC
∙ DFTp∙NC{𝑤𝑥[𝑚, 𝑛]}[𝑚, NC] 

( 22 ) 

 

Where 𝑤𝑥(𝑚, 𝑛) is the windowed signal (this is, the signal after 

applying the window function), and the DFT calculated with a 

fixed window size (NW) is defined by Eq. (23). 

DFTNW{𝑤𝑥[𝑚, 𝑛]}[𝑚, 𝑘] = ∑ 𝑤𝑥[𝑚, 𝑛]𝑒−𝑖
2𝜋∙𝑘∙𝑛
NW

NW−1

𝑛=0

 
( 23 ) 

In standard STFT the window size is fixed in the time domain, 

while in the STFT-FD it is fixed in the frequency domain. 

Therefore, the window size of this transform, expressed in 

number of samples, depends on 𝑝, according to Eq. (3). Taking 

the components of the transform from the DFTs of the 

windowed signal of different window sizes is equivalent to 

taking the components from FFTs or STFTs of different 

window sizes. Therefore, the proposed transform could also be 

considered as multi-resolution STFT. In fact, if we denote 

STFTNW∙Ts{𝑥[m]}[𝑚, 𝑓] the STFT of a signal 𝑥[m], calculated 

with a fixed window size of NW∙ Ts seconds, the STFT-FD that 

we are proposing in this paper can be formulated by Eq. (24). 
STFT_FD{𝑥[m]}[𝑚, 𝑝] = 

1

√𝑝 ∙ NC
∙ STFTp∙NC∙Ts {𝑥[m]} [𝑚,

1

𝑝 ∙ Ts
] 

( 24 ) 

This means that for each value of 𝑝 we are computing the 

transform with an STFT of a different window size, similar to 

multi-resolution STFT. This can also be formulated in the 

continuous time, using the period (T) instead of 𝑝, where it is 

clear that we use a window size which is NC times the period 

that we are analyzing, as explained in [36]. 

STFT_FD{𝑥(t)}(𝑡, 𝑇) =
1

√𝑇 ∙ NC
∙ STFTT∙NC {𝑥(t)} (𝑡,

1

𝑇
) ( 25 ) 

The major differences between these techniques are that multi-

resolution  STFT requires a band-pass filter to separate the 

bands when different window sizes are applied, and in multi-

resolution STFT only a few discrete window sizes are typically 

used [9, 10]. The STFT-FD is a special case of multi-resolution 

STFT, where every frequency has a different window size. In 

the present formulation, the result is normalized using the 

square root of the number of samples of the window.  

6.  TIME-FREQUENCY VS TIME-SCALE 

As the proposed transform could be expressed as a variant of 

the Fourier transform, as well as an alternative discretization of 

the Continuous Wavelet Transform, it is interesting to explore 

the results of the algorithm in two domains: time-frequency and 

time-scale. Compared to wavelets, the selection of a different 

mother wavelet can lead to different results [25]. Although it 

can be considered a special case of multi-resolution STFT, that 

technique is typically computed processing only a couple of 

different values of window sizes, therefore adapting worse to 

different frequencies or scales [24]. The results of the STFT-FD 

were compared against standard STFT, an Adaptive Optimal-
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Kernel Time Frequency Representation, multi-resolution STFT  

and wavelets in [36, 37] using several types of signals. 

Therefore, the case study of this paper focuses on the 

comparison with the CQT, and especially in the time-scale 

domain.  

6.1.  Synthetic signal: Linear Period chirp 

Two linear frequency chirps were tested in [36] and the results 

show that the STFT-FD does not provide good resolution for 

this kind of signals, especially for high frequencies. This is 

inherent to the transform, because the sweep in this transform 

is linear in variable p, which is proportional to period (and not 

to frequency). 

𝑝 =
𝑇

Ts
 

( 26 ) 

To demonstrate the potential advantages of this approach, we 

analyze in this paper a linear period chirp using a sinusoid 

signal whose period changes linearly with time. We propose a 

sinusoid signal 𝑥(𝑡), as shown in Eq. (27). 

𝑥(𝑡) = 𝑠𝑖𝑛(∅(𝑡)) 
( 27 ) 

Where ∅(𝑡) is the argument of the sinusoid. 

We set the instantaneous period (which is the inverse of the 

instantaneous frequency [41]) to change linearly with time 

according to Eq. (28). 

𝑇(𝑡) =
1

𝑓(𝑡)
=

1

1
2𝜋
𝑑∅(𝑡)
𝑑𝑡

= T0 + K ∙ 𝑡 ( 28 ) 

Where 𝑇(𝑡) is the instantaneous period, 𝑓(𝑡) is the 

instantaneous frequency, T0 is the initial period, and K  is the 

rate of change of the period. 

By integrating, we obtain Eq. (29) for the linear period chirp. A 

synthetic signal has been built with 2000 samples, a sample 

frequency of 100Hz, an initial period T0 = 20𝑚𝑠, and a rate of 

change of the period K = 0.09. It is represented in Fig. 1 in the 

time domain. The aspect of this signal in the time domain is 

similar to the frequency chirp but the rate of change of the 

instantaneous frequency is different. 

𝑥(𝑡) = 𝑠𝑖𝑛 (2𝜋 ∙
𝑙𝑛|T0 + K ∙ t|

K
) 

( 29 ) 

 

Fig. 1 Linear period chirp signal represented in the time domain. 

This signal is represented using the brute force method of the 

constant-Q transform [32], both in the time-frequency domain 

(see Fig. 2) and in the time-scale domain (see Fig. 3).  

 
Fig. 2 Linear period chirp signal represented with the constant-Q transform in 

the time-frequency domain (Q=4). 

In the time-scale domain, the period changes linearly with time, 

as determined by Eq. (28). In the frequency domain, the inverse 

relation between frequency and period is identified. In the time-

scale domain, the width of the signal is also observed to increase 

with the scale. The reason for this is clear if we re-write CQT 

Eq. (14) in terms of the period, see Eq. (30), as the window size 

is increased proportionally to the period. We also observe that 

the CQT has a very poor resolution in the time-scale domain, 

especially for high scales.  

𝑁𝑘 =
𝑇𝑘
Ts
Q 

( 30 ) 

Where 𝑇𝑘 is the period in 𝑘. 

 

 
Fig. 3 Linear period chirp signal represented with the constant-Q transform in 

the time-scale domain (Q=4). 

The STFT-FD is represented in Fig. 4 and Fig. 5. The equation 

is almost the same as in the CQT (except for the normalization 

factor) and therefore results are very similar, but the way the 

sweep is carried out in the STFT-FD improves significantly the 

resolution of this transform.  
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Fig. 4 Linear period chirp signal represented with the STFT-FD in the time-

frequency domain (NC=4). 

This improvement is especially noted in the time-scale domain 

(see Fig. 5 compared to Fig. 3). Please note that the CQT only 

samples some frequency values, see Eq. (19), and rounds to the 

nearest point. Instead, the STFT-FD calculates all the terms that 

can be computed using the equations that define these 

transforms. This is shown in Eq. (2) with 𝑝 starting in 2, which 

corresponds to Nyquist frequency, and finishing in NS/NC, 

which is the upper limit, as higher values of 𝑝 would require a 

window size larger than the number of samples of the signal 

(see Eq. (3)). This is the reason for the improved resolution 

observed in the case studies of this paper, especially in the time-

scale domain. This also has an impact on computing time. The 

CQT is computed in 0.8s, while the STFT-FD is computed in 

3.5s. 

 
Fig. 5 Linear period chirp signal represented with the STFT-FD in the time-

scale domain (NC=4). 

6.2.  Application to a real signal: ECG 

An ECG signal4, represented in Fig. 6 in the time domain, is 

selected as a real case study to compare the time-frequency and 

time-scale domains. In Fig. 7, the CQT of the ECG signal is 

represented. In Fig. 8 and Fig. 9, the ECG signal is analyzed 

                                                           
4 The ECG signal corresponds to 10s of a signal downloaded from 

http://eleceng.dit.ie/dorran/matlab/ecg.txt, with a sample frequency of 100Hz 
(original source: https://physionet.org). 

using the STFT-FD in the time-frequency domain and in the 

time-scale domain. This representation seems to have more 

resolution than the CQT and uses a different normalization 

factor. In the time-scale domain we use the period (obtained as 

p∙Ts according to Eq. (21)) to represent the scale. With the 

STFT-FD, in both the time-frequency and in the time-scale 

domain, we can observe the impulses every second, and two 

low frequency components. The impulses (Area 1) are observed 

as high frequencies in the time-frequency representation, and 

low scales in the time-scale representation. The two low 

frequency components (Areas 2 and 3) have a scale 

(represented by the period) of about 0.5s and 1s, corresponding 

to 2Hz and 1Hz respectively. These two frequency components, 

as well as the impulses, are caused by the cardiac cycle of atrial 

and ventricular depolarizations and repolarizations. The low 

frequency components (high scale components) are better 

observed with the STFT-FD in the time-scale domain.  

 

Fig. 6 ECG signal represented in the time domain 

Fig. 7.  ECG signal represented with the constant-Q transform in the time-

frequency domain (Q=4). 

http://eleceng.dit.ie/dorran/matlab/ecg.txt
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Fig. 8. ECG signal represented with the STFT-FD in the time-frequency 

domain (NC=4). 

 
Fig. 9. ECG signal represented with the STFT-FD in the time-scale domain 

(NC=4). 

7.  CONCLUSIONS 

In this paper we have revisited the STFT-FD, improving its 

formulation according to wavelet theory, in order to normalize 

the energy for all the frequencies. In this paper the transform 

has been analyzed and compared with four existing techniques. 

Following [36], it is shown that the transform can be considered 

a variant of the standard STFT. Besides, this paper also shows 

that the transform can be formulated as an alternative 

discretization of the Continuous Wavelet Transform. The 

similarities and differences with the constant-Q transform have 

also been discussed, showing that the main difference is in the 

way the sweep is carried out. Finally, it is shown that the 

proposed transform can also be expressed as a special case of 

multi-resolution STFT, without requiring the band-pass filters 

of that approach.  

Instead of the more common exponential progression of scales, 

the proposed transform has a specific linear sweep in the scale 

variable, where all the dilatation (scale) parameters (𝑝) are 

integers. In some signals, like ECGs, the proposed sweep can 

enhance the quality of the representation.  

To sum up, the paper demonstrates how the proposed transform 

can be expressed as a variant of discrete Fourier transforms, as 

well as an alternative discretization of wavelet transforms. 

Besides, it is a variant of the CQT and a special case of the 

multi-resolution STFT. Therefore, the transform can serve as a 

common framework for these four techniques. The major 

drawback of the present transform (as in the CQT) is the 

computational complexity, this being an area of further research 

[36, 37]. However, the fact of combining different perspectives 

within a single transform, enhances the value of the proposed 

approach  allowing it to obtain good representations of signals, 

as shown in this paper, and analyzed in more detail in [36, 37]. 

Finally, as the sweep is inversely proportional to the frequency, 

and proportional to the period, the transform is more adequate 

for analyzing low frequency components or signals whose 

components vary proportionally to the period. Thus, in the 

paper it is shown that the low frequency components of ECG 

signals are better represented in the time-scale or time-period 

domain using the STFT-FD than in the time-frequency domain 

using the CQT.  

Given these advantages, it is expected that the transform will be 

useful in fields where currently wavelets and the STFT are now 

applied, such as engineering, speech, biology and medicine. 

The areas of engineering and medicine may be especially 

interesting for using the time-scale representation of this 

transform. In the same way that the frequency domain 

contributed to new theories in engineering, the application of 

this kind of signal techniques, not only in research, but also in 

the day-to-day of medicine could also enhance the 

understanding of the information extracted from biomedical 

signals. 
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